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Abstract

Making use of distributed execution within scientific 
workflows is a growing and promising methodology to 
achieve better execution performance. We have 
implemented a distributed execution framework in the 
Kepler scientific workflow environment, called Master-
Slave Distribution, to distribute sub-workflows to a 
common distributed environment, namely ad-hoc 
network computing resources. For a typical parameter 
sweep workflow, this architecture can realize 
concurrent independent sub-workflow executions with 
minimal user configuration, allowing large gains in 
productivity with little of the typical overhead 
associated with learning distributed computing 
systems. We explain details of the Master-Slave 
architecture and demonstrate its usability and time 
efficiency by a use case in the theoretical ecology 
domain. We also discuss the capabilities of this 
architecture under different computational domains in 
Kepler.  

1. Introduction 

Scientific workflow management systems, e.g., 
Kepler [1], Taverna [2], Triana [3], Pegasus [4], 
ASKALON [5] and SWIFT [6], have demonstrated 
their ability to help domain scientists solve scientific 
problems by synthesizing different data and computing 
resources. Scientific workflows can operate at different 

levels of granularity, from low-level workflows that 
explicitly move data around and monitor remote jobs, 
to high-level "conceptual workflows" that interlink 
complex, domain-specific data analysis steps.  

Many scientific computing problems have linear or 
greater time complexity, with execution times ranging 
from milliseconds to hours or even days. For small 
parameter configurations that result in few runs, a 
single notebook computer can handle workflow 
execution at times. However, for large parameter 
configurations that involve many permutations or 
intensive computations, the execution tasks may 
require other computing resources to accelerate 
execution. Even though these scientific problems 
would benefit from increased computational resources, 
the configuration complexity associated with most 
distributed systems in use today effectively prevents 
scientists from adopting and using them. For a 
distributed system to be effective, it must both provide 
access to the necessary resources and be easily 
configurable by practicing scientists who are not 
familiar with distributed computing software. Thus, the 
problem we address is how to smoothly transition 
between execution environments; a workflow should 
function both when distributed computing resources 
are available and when they are not, and a user should 
be able to easily leverage distributing computing 
resources with little knowledge of the underlying 
distributed system. 

There are many kinds of sophisticated distributed 
environments that can be utilized for workflow 
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execution, such as Cluster, Grid and Cloud computing 
[4][5][6][7][8][9]. A simpler approach is an ad-hoc 
network comprised of independent computers. We 
utilize such a network to accelerate workflow 
execution, implementing an architecture in Kepler 
called Master-Slave. In this paper, we will discuss the 
application of this architecture for parameter sweep 
applications and workflows [7][10], which are 
common in many scientific domains and involve 
independent multiple execution, i.e., “embarrassingly 
parallel problems”. Compute-intensive tasks in these 
workflows can be distributed among ad-hoc network 
nodes and executed in parallel. 

In Section 2, we describe a real-world parameter 
sweep workflow use case in the theoretical ecology 
domain that we use to validate system capability and 
usability. Section 3 describes the background of our 
architecture. Our approach and its results for the use 
case are explained in Sections 4 and 5. We compare 
our work with related work in Section 6. Finally, we 
conclude and explain future work in Section 7.

2. Theoretical Ecology Use Case 

Our domain example is a spatial stochastic birth-
death process [11][12] that simulates the dynamics of 
Mycoplasma gallisepticum in House Finches 
(Carpodacus mexicanus) [13]. The use case needs to 
be run over a broad range of parameters, such as the 
birth rate of finches (parameter b in Table 1) and the 
death rate of finches (parameter d in Table 1). These 
parameters are analogous to those in [13]. Additionally, 
we can test the scalability of the problem, as its spatio-
temporal aspect can be solved quickly for simulations 
with short temporal lengths (parameter E, end time of 
simulation), and small spatial areas (parameters X and 
Y, the breadth and width of the simulated spatial 
domain), but the process can consume a large amount 
of computation time for longer temporal solutions of 
larger simulated spatial domains. The simulation code 
is written in GNU C++, and involves file reads, 
relatively complex mathematical operations, and 
delayed functor calls. The compiled executable, and 
thus the simulation itself, is called simhofi. The 
execution results were visualized using the R statistical 
system, as no graphical output was coded into the 
simulation program itself. 

Figure 1. Conceptual workflow for ecology use case.
The conceptual workflow for this use case has three 

main parts (Figure 1): parameter preparation, 
computation tasks, and result display. The workflow 
was initially designed to be executed only on a single 
computer, and it works well with small parameter 
ranges. The execution time of each iteration of the 
program is proportional to X * Y * E. So when the 
ecologist needs simulation results for longer temporal
solutions of larger simulated spatial domains, the 
execution time of the workflow increases rapidly, e.g., 
a single iteration of the simulation can take 5 hours for 
X=32, Y=32, E=30, and a given parameter sweep might 
involve tens or hundreds of iterations. 

This use case is typical within the Kepler 
community. Implementations of such workflows using 
Kepler’s Master-Slave Distribution Framework reduce 
execution time by utilizing distributed computing 
resources with minimal changes to the workflows 
compared to the non-distributed case. The main 
characteristics of the use case are as follows: 

Parameter Sweep: Parameter sweep applications 
and workflows [7][10] are common in many 
scientific domains. Compute-intensive tasks in 
one workflow need to be executed many times 
with different parameter permutations. Each 
execution could take a long time and is 
independent of the others. 
Smooth Transition of Computation 
Environments: A common empirical method for 
workflow design is to test workflow logic with 
small parameters locally at first, and then change 
the computation environments of the workflow to 
distributed environments to accelerate workflow 
execution with large parameters. A major goal of 
our design is to make this transition as easy as 
possible for workflow users, while minimizing 
workflow modifications.  
Partial Workflow Distribution: Users may still 
need some parts of the workflow to run locally. It 
may be for easy interaction, such as parameter 
preparation and results display, or privacy, such 
as some tasks that need to be executed on local, 
private data.
Provenance Collection: Users may need to track 
workflow output data generated by domain 
specific programs according to given parameter 
ranges. Provenance collection should work in 
both local and distributed environments.
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3. Background 

3.1. Kepler 

The Kepler project 1  aims to produce an open-
source scientific workflow system that allows 
scientists to design and efficiently execute scientific 
workflows. Since 2003, Kepler has been used as a 
workflow system within over 20 diverse projects and 
multiple disciplines. 

Inherited from Ptolemy II 2 , Kepler adopts the 
actor-oriented modeling [1] paradigm for scientific 
workflow design and execution. Each actor is designed 
to perform a specific independent task which can be 
implemented as "atomic" actors and "composite" actors. 
Composite actors are collections or sets of atomic 
actors bundled together to perform more complex 
operations. All these actors inherit the same interfaces, 
such as prefire(), fire() and postfire(), which tell the 
actor what to do at various times during workflow 
execution.

Another unique property inherited from Ptolemy II 
is that the order of execution of actors in the workflow 
is specified by an independent entity called the 
director. The director defines how actors are executed 
and how they communicate with each other. The 
execution model defined by the director is called the
Model of Computation [1]. Since the director is 
decoupled from the workflow structure, the user can 
easily change the computation model by replacing the 
director using the Kepler graphical user interface. As a 
consequence, a single actor can execute both in a 
sequential manner, e.g., using the Synchronous Data 
Flow (SDF) director or in a parallel manner e.g., using 
the Process Network (PN) director. 

3.2. Master-Slave Architecture 

We present a high-level distributed execution 
framework for scientific workflows in [14]. In this 
distributed framework, illustrated in Figure 2, each 
computing node runs an instance of the workflow 
execution engine and is assigned one or more roles. 
Workflow execution is initiated by a Master node that 
performs overall coordination of an arbitrary number 
of Slave nodes that execute sub-workflow tasks. 
Additionally, a Registration Center and a Provenance
Manager broker Slave execution capability and data 
generated during workflow execution, respectively.

                                                          
1 http://www.kepler-project.org/
2 http://ptolemy.eecs.berkeley.edu/ptolemyII/

Figure 2: Master-slave architecture for workflow 
distributed execution.

4. Approach 

Our previous paper [14] discussed this architecture 
from a general and high-level perspective. In this 
section, we only address implementation details that 
are unique to Kepler.  

4.1. Distributed Composite Actor 

A distributed composite actor was designed, called 
DistributedCompositeActor, to act as the role of 
Master. Each data received by the 
DistributedCompositeActor is distributed to a Slave 
node, and the result data is returned to the Master node 
by the Slave node. This actor has different behavior 
with different computation models [1]. We will discuss 
its behavior with two typical computation models: 
Synchronous Dataflow (SDF) and Process Networks 
(PN). This behavior is illustrated in Figure 3.  

In the SDF model, an actor consumes and produces 
a fixed number of input and output data per firing. 
When executed in this model, 
DistributedCompositeActor can only distribute the 
current input data to one Slave per firing. The Slaves 
will be executed synchronously since 
DistributedCompositeActor is only allowed to 
schedule and execute one Slave at a time. It is more 
suitable for dependent task execution, e.g., Markov 
Chain Monte Carlo, where the inputs of the next sub-
workflow are dependent on the outputs of the former 
one.

In the PN model, a workflow is driven by data 
availability: all actors in a workflow execute in their 
own active threads and an actor continues to execute 
until no input data are available. In this model, 
DistributedCompositeActor schedules and executes all 
available Slaves in one firing based on availability of 
input data. Concretely, DistributedCompositeActor 
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monitors the execution of each Slave, and once one 
Slave finishes its current execution, 
DistributedCompositeActor will send the next input 
data to this Slave for processing. The Slaves therefore 
execute concurrently with different input data. 
Additional Slaves increase parallel computation and 
faster Slaves will execute more frequently. Because 
some nodes might calculate results in shorter time 
periods than others, output data may not be returned in 
the same order in which they were sent. Thus, this 
model is suitable for independent, multiple task 
execution. Parameter sweep workflow can utilize the 
Process Network model to improve execution 
efficiency by distributing tasks in parallel to remote 
Slave nodes.  

Figure 3: Behavior of DistributedCompositeActor 
with different computation models. The order in 
which data is sent and returned depends on the 

computational model used. 

Since DistributedCompositeActor inherits the same 
interfaces of other actors, it is very easy to switch 
between the regular composite actor and 
DistributedCompositeActor. For workflow users, this 
actor is very similar to the regular composite actor 
except a few additional configuration parameters for 
the Slaves, such as the Slave host URL. From a 
workflow specification perspective, the only change is 
the actor class name and some attributes. All other 
workflow specification details, such as inner actors and 
links between actors, are still the same. From the user's 
perspective, a user can switch between a regular 
composite actor and DistributedCompositeActor just 
by right clicking on the composite actor.  

For the Slave role of our Master-Slave architecture, 
we implemented a Java Remote Method Invocation 
(RMI) service that wraps the Kepler execution engine 
and that communicates with the Master through the 
underlying RMI infrastructure. For each Slave node, a 
Slave package and the domain specific programs to be 
invoked, such as the simhofi and R programs in the 

above use case, must be deployed on the Slave node 
beforehand. During the initial phase of the workflow, 
DistributedCompositeActor will transfer its 
specification to each Slave. Then the Slaves are ready 
for receiving input data and execution. The output data 
will be transferred back to the Master node once the 
current iteration is finished. 

To manage available Slave information, a 
centralized Web service, called the Registration 
Service, is provided. When a Slave RMI service is 
started, it invokes the Registration Service to register 
this node as a Slave. This allows the Master node to 
get a listing of all available Slave nodes by querying 
the Registration Service. We are extending the 
Registration Service to support more detailed Slave 
capability metadata and improved Slave selection [14]. 

In addition to the Registration Service, we also 
provide the Authentication Service, a web service for 
user authentication. Users need to login to see the 
available Slaves and their credentials are needed for 
Slave operations, such as start, stop, getStatus. This 
service is currently implemented using LDAP, but 
could also be implemented using other authentication 
systems by implementing the service interface. 

4.2. Provenance Collection 

The Kepler Provenance Framework collects 
information about workflow structure and executions 
[15]. We have implemented several new provenance-
related features for this use case. Before the workflow 
executes, it saves a copy of the workflow. Additionally, 
the contents of files generated by actors during 
workflow execution are now stored. In this use case, 
the generated data files and R visualizations are stored 
in the provenance database, along with the workflow 
(including all input parameter values) that created them. 
In general, for each possible combination in a 
parameter sweep, one or more domain specific 
programs will generate output files; our provenance 
features make it easier for users to track data files for 
large parameter sweeps. 

If a workflow is executed within the Master-Slave 
architecture, the related distributed provenance 
information will be automatically recorded, such as 
Slave node information. Since Slave nodes used in 
previous workflow executions may not always be 
accessible, one challenge for a distributed provenance 
framework is where to store provenance information 
generated on Slaves. To deal with this issue, our 
provenance framework can be configured to support 
centralized or decentralized provenance information 
recording. In the former case, each Slave writes 
provenance information directly to a centralized 
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database. Whereas in the latter, as illustrated in Figure 
4, each Slave first writes to a local file-based database, 

and the provenance information is merged into a 
centralized database upon workflow completion. 

Master

Execution Engine

Slave1

4.1. Distrib
ute Input Token

Execution Engine

Provenance Database

1. Record Workflow 
Spec.

4. Record Execution 
Info (e.g.  execution 
time, output files)

3.1. Record Sub-
Workflow Spec.

5.1. Record Execution 
Info (e.g.  execution 
time, output files)2.1. Distrib

ute Sub-Workflow Spec.

6.1. Merge Execution Info

...
2.n. ...

6.n. ...

4.n. ...

Provenance Database

Execution Engine

SlaveN
3.n. Record Sub-
Workflow Spec.

5.n. Record Execution 
Info (e.g.  execution 
time, output files)

Provenance Database

Figure 4: Interaction sequences for distributed provenance. 

5. Results 

5.1. Workflow 

The Kepler workflow for the above use case is 
shown in Figure 5. The top-level workflow is shown in 
the lower left of the figure. Its first part is for 
parameter preparation. House Finch Death Rate (d)
and House Finch Birth Rate (b) are two parameters 
when combined generate 8 parameter combinations. In 
the composite actor Parameter Sweep, these two 
parameters are permuted and generate the 
corresponding input data for the next actor. Actor 
Distributed Simhofi, which contains the main 
computation tasks of the whole workflow, is a 
DistributedCompositeActor that will be distributed to 
Slaves, and its inner structure is shown in the upper 
right of Figure 5. It uses the External Execution actor 
to invoke the simhofi program with its parameters, and 
then invokes the R Expression actor to generate 
visualizations of the simhofi execution result. The last 
two actors of the top level workflow, R Output and 
ImageJ, display the results. The visual simulation 
result (bottom right of Figure 5) will be shown through 
the ImageJ actor and the concrete text information will 
be shown at the R Output actor. Besides the main 
workflow structure, the blue rectangle in the top level 
workflow, called Provenance Recorder, specifies that  
provenance information will be recorded. 

5.2. Usability 

We hide many technical details from users in the 
workflow, including data transfer and Slave 

management details. Users use the 
DistributedCompositeActor just like the common 
composite actor. This workflow also represents a 
common design structure for parameter sweep 
applications in Kepler workflows, which can be easily 
adapted to other parameter sweep applications. 

As illustrated in Figure 6, if a user wants to change 
her existing composite actor to the distributed one, she 
just needs to right click and choose ‘Distribute This 
Actor’ menu item. A dialogue will then be shown for 
Slave selection. After this configuration, the actor is 
converted to a distributed one and ready to execute on 
the chosen Slave node(s). The new workflow is 
identical except for the actor class name and a few 
attribute values. 

5.3. Experiment 

To compare the time efficiency of Master-Slave and 
its behavior with different computation models, we ran 
the workflow locally and with the Master-Slave 
architecture, both with the SDF and PN directors. We 
also recorded the workflow execution time with 
different parameter configurations to examine when 
the use of the Master-Slave architecture is beneficial.

In our experiment, we used one computer for local 
execution, and used this computer and one additional 
for Master-Slave execution. Since one computer can 
act as both Master and Slave node, we use the two 
computers as Slaves. The concrete experiment data is 
shown in Table 1 and Figure 7. 

The experimental data shows that the Master-Slave 
architecture improves execution efficiency for large 
data sets and multiple independent program executions, 
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whereas its overhead reduces efficiency for short 
execution runs. The PN director is suitable for the 
parameter sweep workflow and the experimental 

results show the PN director for Master-Slave 
architecture is more efficient than SDF director.

Figure 5: Distributed workflow for ecology use case, showing the overall workflow in the lower left and 
the portion of the workflow that is distributed to Slave nodes in the upper right. 

Figure 6: Interaction for execution environment transition. 
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Table 1: Comparative execution times for local and distributed execution of the ecology use case. 
Execution Time (minutes) Parameters 

SDF locally PN locally SDF Master-Slave PN Master-Slave
b=<0.1, 0.2, 0.3, 0.4>, d=<2.5,
3.5>, X=3, Y=3, E=4

0.39 0.35 0.60 0.52

b=<0.1, 0.2, 0.3, 0.4>, d=<2.5,
3.5>, X=8, Y=8, E=30

32.21 32.24 19.05 9.38

b=<0.1, 0.2, 0.3, 0.4>, d=<2.5,
3.5>, X=16, Y=16, E=30

502.2 510 309 147

Testbed Constitution 
OS Memory CPU

Notebook Window XP 2 GB 2.00 GHz Duo Core 
Desktop Mac OS X 2 GB 2.80 GHz Duo Core 

Figure 7: Experiment data illustration for the 
ecology use case.

6. Related Work 

There have been several workflow systems 
[4][5][6][7][8][9] that can utilize distributed 
environments, such as Cluster, Grid and Cloud 
computing, to accelerate workflow execution. 
However, most of them need job management system 
support, and this may be too heavyweight or expensive 
for some scientific computing problems. In addition, 
these workflows themselves are dependent on the 
distributed environments to some extent, making them 
more difficult to configure. In these systems, users 
may need to know, e.g., a specific job description 
specification syntax to construct the workflow. Further, 
converting locally executable workflows to ones that 
execute in most distributed environment systems is not 
trivial. Most of these do not allow partial workflow 
distribution rather than submitting the whole workflow 
to distributed systems. Comparing the above work, our 
Master-Slave architecture focuses on the lightweight 

and usability objectives. With the RMI infrastructure, 
each computer can easily join and exit the architecture; 
no additional distributed resource management system, 
such as, Condor [16] and Globus [17], is needed. 
Additionally, users can easily transition sub-workflows 
from local execution to ad-hoc network based 
distributed execution. 

Triana [3] supports a function similar to our Master-
Slave architecture by distributing sub-workflows to 
remote services. It provides two kinds of distributed 
execution topologies: parallel task computation and 
pipelined connectivity with direct data transfer 
between tasks, which is similar to our 
DistributedCompositeActor but lacks the distributed 
provenance and security frameworks that we present 
for Kepler.

7. Conclusions and Future Work 

Parameter sweep applications in which the 
programs can be executed independently for each 
parameter combination are common in many scientific 
domains. A simple and common distributed 
environment is an ad-hoc network comprised of 
independent computers. We discuss the application of 
our Master-Slave architecture which utilizes ad-hoc 
network computing resources to accelerate these kinds 
of workflows. For many scientists who are unfamiliar 
with Cluster or Grid computing, the type of ad-hoc 
network that we demonstrate can be extremely 
beneficial. It allows scientists to utilize the dozens of 
computers that they may have available in their local 
network with minimal overhead and little or no 
knowledge of complex distributed computing 
frameworks. All they need is Kepler installed on each 
of the nodes. By analyzing the performance of this 
architecture under different computational domains in 
Kepler, we show that there are benefits to using the PN 
model over SDF when possible in workflow design. 
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The workflow and experiment for a real ecology use 
case demonstrate its capability and usability.  

Currently our Master-Slave architecture is 
implemented to utilize ad-hoc network computers. For 
future work, we plan to extend it to enable users to 
easily switch from local computation to other 
distributed computation environments, such as Cluster, 
Grid, and Cloud platforms.  

An important part of our future work is to 
standardize third party data transfers among the 
distributed nodes. We’re working with the rest of the 
Kepler community to consolidate different approaches. 

We are in the process of conducting a study of 
distributed computing work within Kepler. We will 
categorize different distributed computing capabilities 
and, using use cases, we will explain how to choose a 
distributed computing approach to match the 
requirements of a problem. 
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