
Accelerating Parameter Sweep Workflows by Utilizing Ad-hoc Network
Computing Resources: an Ecological Example

Jianwu Wang1, Ilkay Altintas1, Parviez R. Hosseini2, Derik Barseghian3, Daniel Crawl1,
Chad Berkley3, Matthew B. Jones3

1 San Diego Supercomputer Center, UCSD, U.S.A.
{jianwu, altintas, crawl}@sdsc.edu

2 The Consortium for Conservation Medicine, Wildlife Trust, U.S.A.
hosseini@princeton.edu

3 National Center for Ecological Analysis and Synthesis, UCSB, U.S.A.
{barseghian, berkley, jones}@nceas.ucsb.edu

Abstract

Making use of distributed execution within scientific
workflows is a growing and promising methodology to
achieve better execution performance. We have
implemented a distributed execution framework in the
Kepler scientific workflow environment, called Master-
Slave Distribution, to distribute sub-workflows to a
common distributed environment, namely ad-hoc
network computing resources. For a typical parameter
sweep workflow, this architecture can realize
concurrent independent sub-workflow executions with
minimal user configuration, allowing large gains in
productivity with little of the typical overhead
associated with learning distributed computing
systems. We explain details of the Master-Slave
architecture and demonstrate its usability and time
efficiency by a use case in the theoretical ecology
domain. We also discuss the capabilities of this
architecture under different computational domains in
Kepler.

1. Introduction

Scientific workflow management systems, e.g.,
Kepler [1], Taverna [2], Triana [3], Pegasus [4],
ASKALON [5] and SWIFT [6], have demonstrated
their ability to help domain scientists solve scientific
problems by synthesizing different data and computing
resources. Scientific workflows can operate at different

levels of granularity, from low-level workflows that
explicitly move data around and monitor remote jobs,
to high-level "conceptual workflows" that interlink
complex, domain-specific data analysis steps.

Many scientific computing problems have linear or
greater time complexity, with execution times ranging
from milliseconds to hours or even days. For small
parameter configurations that result in few runs, a
single notebook computer can handle workflow
execution at times. However, for large parameter
configurations that involve many permutations or
intensive computations, the execution tasks may
require other computing resources to accelerate
execution. Even though these scientific problems
would benefit from increased computational resources,
the configuration complexity associated with most
distributed systems in use today effectively prevents
scientists from adopting and using them. For a
distributed system to be effective, it must both provide
access to the necessary resources and be easily
configurable by practicing scientists who are not
familiar with distributed computing software. Thus, the
problem we address is how to smoothly transition
between execution environments; a workflow should
function both when distributed computing resources
are available and when they are not, and a user should
be able to easily leverage distributing computing
resources with little knowledge of the underlying
distributed system.

There are many kinds of sophisticated distributed
environments that can be utilized for workflow

2009 Congress on Services - I

978-0-7695-3708-5/09 $25.00 © 2009 IEEE

DOI 10.1109/SERVICES-I.2009.9

267

execution, such as Cluster, Grid and Cloud computing
[4][5][6][7][8][9]. A simpler approach is an ad-hoc
network comprised of independent computers. We
utilize such a network to accelerate workflow
execution, implementing an architecture in Kepler
called Master-Slave. In this paper, we will discuss the
application of this architecture for parameter sweep
applications and workflows [7][10], which are
common in many scientific domains and involve
independent multiple execution, i.e., “embarrassingly
parallel problems”. Compute-intensive tasks in these
workflows can be distributed among ad-hoc network
nodes and executed in parallel.

In Section 2, we describe a real-world parameter
sweep workflow use case in the theoretical ecology
domain that we use to validate system capability and
usability. Section 3 describes the background of our
architecture. Our approach and its results for the use
case are explained in Sections 4 and 5. We compare
our work with related work in Section 6. Finally, we
conclude and explain future work in Section 7.

2. Theoretical Ecology Use Case

Our domain example is a spatial stochastic birth-
death process [11][12] that simulates the dynamics of
Mycoplasma gallisepticum in House Finches
(Carpodacus mexicanus) [13]. The use case needs to
be run over a broad range of parameters, such as the
birth rate of finches (parameter b in Table 1) and the
death rate of finches (parameter d in Table 1). These
parameters are analogous to those in [13]. Additionally,
we can test the scalability of the problem, as its spatio-
temporal aspect can be solved quickly for simulations
with short temporal lengths (parameter E, end time of
simulation), and small spatial areas (parameters X and
Y, the breadth and width of the simulated spatial
domain), but the process can consume a large amount
of computation time for longer temporal solutions of
larger simulated spatial domains. The simulation code
is written in GNU C++, and involves file reads,
relatively complex mathematical operations, and
delayed functor calls. The compiled executable, and
thus the simulation itself, is called simhofi. The
execution results were visualized using the R statistical
system, as no graphical output was coded into the
simulation program itself.

Figure 1. Conceptual workflow for ecology use case.
The conceptual workflow for this use case has three

main parts (Figure 1): parameter preparation,
computation tasks, and result display. The workflow
was initially designed to be executed only on a single
computer, and it works well with small parameter
ranges. The execution time of each iteration of the
program is proportional to X * Y * E. So when the
ecologist needs simulation results for longer temporal
solutions of larger simulated spatial domains, the
execution time of the workflow increases rapidly, e.g.,
a single iteration of the simulation can take 5 hours for
X=32, Y=32, E=30, and a given parameter sweep might
involve tens or hundreds of iterations.

This use case is typical within the Kepler
community. Implementations of such workflows using
Kepler’s Master-Slave Distribution Framework reduce
execution time by utilizing distributed computing
resources with minimal changes to the workflows
compared to the non-distributed case. The main
characteristics of the use case are as follows:

Parameter Sweep: Parameter sweep applications
and workflows [7][10] are common in many
scientific domains. Compute-intensive tasks in
one workflow need to be executed many times
with different parameter permutations. Each
execution could take a long time and is
independent of the others.
Smooth Transition of Computation
Environments: A common empirical method for
workflow design is to test workflow logic with
small parameters locally at first, and then change
the computation environments of the workflow to
distributed environments to accelerate workflow
execution with large parameters. A major goal of
our design is to make this transition as easy as
possible for workflow users, while minimizing
workflow modifications.
Partial Workflow Distribution: Users may still
need some parts of the workflow to run locally. It
may be for easy interaction, such as parameter
preparation and results display, or privacy, such
as some tasks that need to be executed on local,
private data.
Provenance Collection: Users may need to track
workflow output data generated by domain
specific programs according to given parameter
ranges. Provenance collection should work in
both local and distributed environments.

268

3. Background

3.1. Kepler

The Kepler project 1 aims to produce an open-
source scientific workflow system that allows
scientists to design and efficiently execute scientific
workflows. Since 2003, Kepler has been used as a
workflow system within over 20 diverse projects and
multiple disciplines.

Inherited from Ptolemy II 2 , Kepler adopts the
actor-oriented modeling [1] paradigm for scientific
workflow design and execution. Each actor is designed
to perform a specific independent task which can be
implemented as "atomic" actors and "composite" actors.
Composite actors are collections or sets of atomic
actors bundled together to perform more complex
operations. All these actors inherit the same interfaces,
such as prefire(), fire() and postfire(), which tell the
actor what to do at various times during workflow
execution.

Another unique property inherited from Ptolemy II
is that the order of execution of actors in the workflow
is specified by an independent entity called the
director. The director defines how actors are executed
and how they communicate with each other. The
execution model defined by the director is called the
Model of Computation [1]. Since the director is
decoupled from the workflow structure, the user can
easily change the computation model by replacing the
director using the Kepler graphical user interface. As a
consequence, a single actor can execute both in a
sequential manner, e.g., using the Synchronous Data
Flow (SDF) director or in a parallel manner e.g., using
the Process Network (PN) director.

3.2. Master-Slave Architecture

We present a high-level distributed execution
framework for scientific workflows in [14]. In this
distributed framework, illustrated in Figure 2, each
computing node runs an instance of the workflow
execution engine and is assigned one or more roles.
Workflow execution is initiated by a Master node that
performs overall coordination of an arbitrary number
of Slave nodes that execute sub-workflow tasks.
Additionally, a Registration Center and a Provenance
Manager broker Slave execution capability and data
generated during workflow execution, respectively.

1 http://www.kepler-project.org/
2 http://ptolemy.eecs.berkeley.edu/ptolemyII/

Figure 2: Master-slave architecture for workflow
distributed execution.

4. Approach

Our previous paper [14] discussed this architecture
from a general and high-level perspective. In this
section, we only address implementation details that
are unique to Kepler.

4.1. Distributed Composite Actor

A distributed composite actor was designed, called
DistributedCompositeActor, to act as the role of
Master. Each data received by the
DistributedCompositeActor is distributed to a Slave
node, and the result data is returned to the Master node
by the Slave node. This actor has different behavior
with different computation models [1]. We will discuss
its behavior with two typical computation models:
Synchronous Dataflow (SDF) and Process Networks
(PN). This behavior is illustrated in Figure 3.

In the SDF model, an actor consumes and produces
a fixed number of input and output data per firing.
When executed in this model,
DistributedCompositeActor can only distribute the
current input data to one Slave per firing. The Slaves
will be executed synchronously since
DistributedCompositeActor is only allowed to
schedule and execute one Slave at a time. It is more
suitable for dependent task execution, e.g., Markov
Chain Monte Carlo, where the inputs of the next sub-
workflow are dependent on the outputs of the former
one.

In the PN model, a workflow is driven by data
availability: all actors in a workflow execute in their
own active threads and an actor continues to execute
until no input data are available. In this model,
DistributedCompositeActor schedules and executes all
available Slaves in one firing based on availability of
input data. Concretely, DistributedCompositeActor

269

monitors the execution of each Slave, and once one
Slave finishes its current execution,
DistributedCompositeActor will send the next input
data to this Slave for processing. The Slaves therefore
execute concurrently with different input data.
Additional Slaves increase parallel computation and
faster Slaves will execute more frequently. Because
some nodes might calculate results in shorter time
periods than others, output data may not be returned in
the same order in which they were sent. Thus, this
model is suitable for independent, multiple task
execution. Parameter sweep workflow can utilize the
Process Network model to improve execution
efficiency by distributing tasks in parallel to remote
Slave nodes.

Figure 3: Behavior of DistributedCompositeActor
with different computation models. The order in
which data is sent and returned depends on the

computational model used.

Since DistributedCompositeActor inherits the same
interfaces of other actors, it is very easy to switch
between the regular composite actor and
DistributedCompositeActor. For workflow users, this
actor is very similar to the regular composite actor
except a few additional configuration parameters for
the Slaves, such as the Slave host URL. From a
workflow specification perspective, the only change is
the actor class name and some attributes. All other
workflow specification details, such as inner actors and
links between actors, are still the same. From the user's
perspective, a user can switch between a regular
composite actor and DistributedCompositeActor just
by right clicking on the composite actor.

For the Slave role of our Master-Slave architecture,
we implemented a Java Remote Method Invocation
(RMI) service that wraps the Kepler execution engine
and that communicates with the Master through the
underlying RMI infrastructure. For each Slave node, a
Slave package and the domain specific programs to be
invoked, such as the simhofi and R programs in the

above use case, must be deployed on the Slave node
beforehand. During the initial phase of the workflow,
DistributedCompositeActor will transfer its
specification to each Slave. Then the Slaves are ready
for receiving input data and execution. The output data
will be transferred back to the Master node once the
current iteration is finished.

To manage available Slave information, a
centralized Web service, called the Registration
Service, is provided. When a Slave RMI service is
started, it invokes the Registration Service to register
this node as a Slave. This allows the Master node to
get a listing of all available Slave nodes by querying
the Registration Service. We are extending the
Registration Service to support more detailed Slave
capability metadata and improved Slave selection [14].

In addition to the Registration Service, we also
provide the Authentication Service, a web service for
user authentication. Users need to login to see the
available Slaves and their credentials are needed for
Slave operations, such as start, stop, getStatus. This
service is currently implemented using LDAP, but
could also be implemented using other authentication
systems by implementing the service interface.

4.2. Provenance Collection

The Kepler Provenance Framework collects
information about workflow structure and executions
[15]. We have implemented several new provenance-
related features for this use case. Before the workflow
executes, it saves a copy of the workflow. Additionally,
the contents of files generated by actors during
workflow execution are now stored. In this use case,
the generated data files and R visualizations are stored
in the provenance database, along with the workflow
(including all input parameter values) that created them.
In general, for each possible combination in a
parameter sweep, one or more domain specific
programs will generate output files; our provenance
features make it easier for users to track data files for
large parameter sweeps.

If a workflow is executed within the Master-Slave
architecture, the related distributed provenance
information will be automatically recorded, such as
Slave node information. Since Slave nodes used in
previous workflow executions may not always be
accessible, one challenge for a distributed provenance
framework is where to store provenance information
generated on Slaves. To deal with this issue, our
provenance framework can be configured to support
centralized or decentralized provenance information
recording. In the former case, each Slave writes
provenance information directly to a centralized

270

database. Whereas in the latter, as illustrated in Figure
4, each Slave first writes to a local file-based database,

and the provenance information is merged into a
centralized database upon workflow completion.

Master

Execution Engine

Slave1

4.1. Distrib
ute Input Token

Execution Engine

Provenance Database

1. Record Workflow
Spec.

4. Record Execution
Info (e.g. execution
time, output files)

3.1. Record Sub-
Workflow Spec.

5.1. Record Execution
Info (e.g. execution
time, output files)2.1. Distrib

ute Sub-Workflow Spec.

6.1. Merge Execution Info

...
2.n. ...

6.n. ...

4.n. ...

Provenance Database

Execution Engine

SlaveN
3.n. Record Sub-
Workflow Spec.

5.n. Record Execution
Info (e.g. execution
time, output files)

Provenance Database

Figure 4: Interaction sequences for distributed provenance.

5. Results

5.1. Workflow

The Kepler workflow for the above use case is
shown in Figure 5. The top-level workflow is shown in
the lower left of the figure. Its first part is for
parameter preparation. House Finch Death Rate (d)
and House Finch Birth Rate (b) are two parameters
when combined generate 8 parameter combinations. In
the composite actor Parameter Sweep, these two
parameters are permuted and generate the
corresponding input data for the next actor. Actor
Distributed Simhofi, which contains the main
computation tasks of the whole workflow, is a
DistributedCompositeActor that will be distributed to
Slaves, and its inner structure is shown in the upper
right of Figure 5. It uses the External Execution actor
to invoke the simhofi program with its parameters, and
then invokes the R Expression actor to generate
visualizations of the simhofi execution result. The last
two actors of the top level workflow, R Output and
ImageJ, display the results. The visual simulation
result (bottom right of Figure 5) will be shown through
the ImageJ actor and the concrete text information will
be shown at the R Output actor. Besides the main
workflow structure, the blue rectangle in the top level
workflow, called Provenance Recorder, specifies that
provenance information will be recorded.

5.2. Usability

We hide many technical details from users in the
workflow, including data transfer and Slave

management details. Users use the
DistributedCompositeActor just like the common
composite actor. This workflow also represents a
common design structure for parameter sweep
applications in Kepler workflows, which can be easily
adapted to other parameter sweep applications.

As illustrated in Figure 6, if a user wants to change
her existing composite actor to the distributed one, she
just needs to right click and choose ‘Distribute This
Actor’ menu item. A dialogue will then be shown for
Slave selection. After this configuration, the actor is
converted to a distributed one and ready to execute on
the chosen Slave node(s). The new workflow is
identical except for the actor class name and a few
attribute values.

5.3. Experiment

To compare the time efficiency of Master-Slave and
its behavior with different computation models, we ran
the workflow locally and with the Master-Slave
architecture, both with the SDF and PN directors. We
also recorded the workflow execution time with
different parameter configurations to examine when
the use of the Master-Slave architecture is beneficial.

In our experiment, we used one computer for local
execution, and used this computer and one additional
for Master-Slave execution. Since one computer can
act as both Master and Slave node, we use the two
computers as Slaves. The concrete experiment data is
shown in Table 1 and Figure 7.

The experimental data shows that the Master-Slave
architecture improves execution efficiency for large
data sets and multiple independent program executions,

271

whereas its overhead reduces efficiency for short
execution runs. The PN director is suitable for the
parameter sweep workflow and the experimental

results show the PN director for Master-Slave
architecture is more efficient than SDF director.

Figure 5: Distributed workflow for ecology use case, showing the overall workflow in the lower left and
the portion of the workflow that is distributed to Slave nodes in the upper right.

Figure 6: Interaction for execution environment transition.

272

Table 1: Comparative execution times for local and distributed execution of the ecology use case.
Execution Time (minutes) Parameters

SDF locally PN locally SDF Master-Slave PN Master-Slave
b=<0.1, 0.2, 0.3, 0.4>, d=<2.5,
3.5>, X=3, Y=3, E=4

0.39 0.35 0.60 0.52

b=<0.1, 0.2, 0.3, 0.4>, d=<2.5,
3.5>, X=8, Y=8, E=30

32.21 32.24 19.05 9.38

b=<0.1, 0.2, 0.3, 0.4>, d=<2.5,
3.5>, X=16, Y=16, E=30

502.2 510 309 147

Testbed Constitution
OS Memory CPU

Notebook Window XP 2 GB 2.00 GHz Duo Core
Desktop Mac OS X 2 GB 2.80 GHz Duo Core

Figure 7: Experiment data illustration for the
ecology use case.

6. Related Work

There have been several workflow systems
[4][5][6][7][8][9] that can utilize distributed
environments, such as Cluster, Grid and Cloud
computing, to accelerate workflow execution.
However, most of them need job management system
support, and this may be too heavyweight or expensive
for some scientific computing problems. In addition,
these workflows themselves are dependent on the
distributed environments to some extent, making them
more difficult to configure. In these systems, users
may need to know, e.g., a specific job description
specification syntax to construct the workflow. Further,
converting locally executable workflows to ones that
execute in most distributed environment systems is not
trivial. Most of these do not allow partial workflow
distribution rather than submitting the whole workflow
to distributed systems. Comparing the above work, our
Master-Slave architecture focuses on the lightweight

and usability objectives. With the RMI infrastructure,
each computer can easily join and exit the architecture;
no additional distributed resource management system,
such as, Condor [16] and Globus [17], is needed.
Additionally, users can easily transition sub-workflows
from local execution to ad-hoc network based
distributed execution.

Triana [3] supports a function similar to our Master-
Slave architecture by distributing sub-workflows to
remote services. It provides two kinds of distributed
execution topologies: parallel task computation and
pipelined connectivity with direct data transfer
between tasks, which is similar to our
DistributedCompositeActor but lacks the distributed
provenance and security frameworks that we present
for Kepler.

7. Conclusions and Future Work

Parameter sweep applications in which the
programs can be executed independently for each
parameter combination are common in many scientific
domains. A simple and common distributed
environment is an ad-hoc network comprised of
independent computers. We discuss the application of
our Master-Slave architecture which utilizes ad-hoc
network computing resources to accelerate these kinds
of workflows. For many scientists who are unfamiliar
with Cluster or Grid computing, the type of ad-hoc
network that we demonstrate can be extremely
beneficial. It allows scientists to utilize the dozens of
computers that they may have available in their local
network with minimal overhead and little or no
knowledge of complex distributed computing
frameworks. All they need is Kepler installed on each
of the nodes. By analyzing the performance of this
architecture under different computational domains in
Kepler, we show that there are benefits to using the PN
model over SDF when possible in workflow design.

273

The workflow and experiment for a real ecology use
case demonstrate its capability and usability.

Currently our Master-Slave architecture is
implemented to utilize ad-hoc network computers. For
future work, we plan to extend it to enable users to
easily switch from local computation to other
distributed computation environments, such as Cluster,
Grid, and Cloud platforms.

An important part of our future work is to
standardize third party data transfers among the
distributed nodes. We’re working with the rest of the
Kepler community to consolidate different approaches.

We are in the process of conducting a study of
distributed computing work within Kepler. We will
categorize different distributed computing capabilities
and, using use cases, we will explain how to choose a
distributed computing approach to match the
requirements of a problem.

8. Acknowledgements

The authors would like to thank the rest of the
Kepler team for their collaboration. This work was
supported by NSF SDCI Award OCI-0722079 for
Kepler/CORE, NSF ITR Award No. 0225676 for
SEEK and NSF CEO:P Award No. DBI 0619060 for
REAP.

References

[1] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E.
Jaeger, M. Jones, E. Lee, J. Tao, Y. Zhao. “Scientific
workflow management and the Kepler system”.
Concurrency and Computation: Practice and
Experience, 18 (10), pp. 1039-1065. 2005.

[2] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M.
Greenwood, T. Carver and K. Glover, M.R. Pocock, A.
Wipat, and P. Li. “Taverna: a tool for the composition
and enactment of bioinformatics workflows”.
Bioinformatics, 20(17), pp. 3045-3054, Oxford
University Press, London, UK, 2004.

[3] I. Taylor, M. Shields, I. Wang, and A. Harrison. “The
Triana Workflow Environment: Architecture and
Applications”. In I. Taylor, E. Deelman, D. Gannon,
and M. Shields, editors, Workflows for e-Science, pp.
320-339. Springer, New York, Secaucus, NJ, USA,
2007.

[4] E. Deelman, G. Mehta, G. Singh, M. Su, and K. Vahi.
“Pegasus: Mapping Large-Scale Workflows to
Distributed Resources”. In I. Taylor, E. Deelman, D.
Gannon, and M. Shields, editors, Workflows for e-
Science, pp 376-394. Springer, New York, Secaucus,
NJ, USA, 2007.

[5] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C.
Seragiotto, Jr, and H. Truong. “ASKALON: a tool set
for cluster and Grid computing”. Concurrency and

Computation: Practice and Experience, 17(2-4), pp.
143-169, Wiley InterScience, 2005.

[6] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von
Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun, M.
Wilde. “Swift: Fast, Reliable, Loosely Coupled Parallel
Computation”. Proceedings of 2007 IEEE Congress on
Services (Services 2007), pp. 199-206, 2007.

[7] D. Abramson, C. Enticott and I. Altinas. “Nimrod/K:
Towards Massively Parallel Dynamic Grid
Workflows”. Proceedings of Supercomputing 2008
(SC2008), Article No. 24.

[8] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K.
Keahey, B. Berriman, J. Good. “On the Use of Cloud
Computing for Scientific Workflows”. Proceedings of
workshop SWBES08: Challenging Issues in Workflow
Applications, 4th IEEE International Conference on e-
Science (e-Science 2008), pp 640-645, 2008.

[9] J. Yu and R. Buyya. “A Taxonomy of Workflow
Management Systems for Grid Computing”. Journal of
Grid Computing, 2006 (3), pp.171-200, 2006.

[10] H. Casanova and F. Berman. “Parameter Sweeps on
The Grid With APST”. In F. Berman, G. Fox and T.
Hey, Grid Computing: Making the Global
Infrastructure a Reality. Chapter 33, Wiley Publisher,
Inc., 2002.

[11] E. Renshaw. “Modelling Biological Populations in
Space and Time”. vol. 11: Cambridge Studies in
Mathematical Biology. Cambridge University Press,
Chichester. 1991

[12] P. R. Hosseini. “Pattern Formation and Individual-
Based Models: The Importance of Understanding
Individual-Based Movement”. Ecological Modeling
194: 357-371. doi:10.1016/j.ecolmodel.2005.10.041.
2006.

[13] P. R. Hosseini, A. Dobson and A. A. Dhondt.
“Seasonality and wildlife disease: How seasonal birth,
aggregation and variation in immunity affect the
dynamics of Mycoplasma gallisepticum in House
Finches”. Proceedings of the Royal Society of London:
Biological Sciences. 271:2569-2577.
doi:10.1098/rspb.2004.2938. 2004.

[14] J. Wang, I. Altintas, C. Berkley, L. Gilbert, M. B.
Jones. “A High-Level Distributed Execution
Framework for Scientific Workflows”. Proceedings of
workshop SWBES08: Challenging Issues in Workflow
Applications, 4th IEEE International Conference on e-
Science (e-Science 2008), pp 634-639, 2008.

[15] I. Altintas, O. Barney, E. Jaeger-Frank. “Provenance
Collection Support in the Kepler Scientific Workflow
System”. Proceedings of International Provenance and
Annotation Workshop (IPAW2006), pp. 118-132, 2006.

[16] D. Thain, T. Tannenbaum and M. Livny, “Distributed
Computing in Practice: The Condor Experience”.
Concurrency and Computation: Practice and
Experience, Vol. 17, No. 2-4, pp 323-356, February-
April, 2005.

[17] I. Foster. “Globus Toolkit Version 4: Software for
Service-Oriented Systems”. IFIP International
Conference on Network and Parallel Computing,
Springer-Verlag LNCS 3779, pp 2-13, 2006.

274

